

Packet Tracer - Configuring DHCP Using Cisco IOS

Topology

Addressing Table

Device	Interface	IPv4 Address	Subnet Mask	Default Gateway
	G0/0	192.168.10.1	255.255.255.0	N/A
R1	S0/0/0	10.1.1.1	255.255.255.252	N/A
	G0/0	192.168.20.1	255.255.255.0	N/A
	G0/1	DHCP Assigned	DHCP Assigned	N/A
	S0/0/0	10.1.1.2	255.255.255.252	N/A
R2	S0/0/1	10.2.2.2	255.255.255.252	N/A
	G0/0	192.168.30.1	255.255.255.0	N/A
R3	S0/0/1	10.2.2.1	255.255.255.0	N/A
PC1	NIC	DHCP Assigned	DHCP Assigned	DHCP Assigned
PC2	NIC	DHCP Assigned	DHCP Assigned	DHCP Assigned
DNS Server	NIC	192.168.20.254	255.255.255.0	192.168.20.1

Objectives

- Part 1: Configure a Router as a DHCP Server
- Part 2: Configure DHCP Relay
- Part 3: Configure a Router as a DHCP Client
- Part 4: Verify DHCP and Connectivity

Scenario

A dedicated DHCP server is scalable and relatively easy to manage, but can be costly to have one at every location in a network. However, a Cisco router can be configured to provide DHCP services without the need for a dedicated server. Cisco routers use the Cisco IOS feature set, Easy IP, as an optional, full-featured DHCP server. Easy IP leases configurations for 24 hours by default. As the network technician for your company, you are tasked with configuring a Cisco router as a DHCP server to provide dynamic allocation of addresses to clients on the network. You are also required to configure the edge router as a DHCP client so that it receives an IP address from the ISP network.

Part 1: Configure a Router as a DHCP Server

Step 1: Configure the excluded IPv4 addresses.

Configure **R2** to exclude the first 10 addresses from the R1 and R3 LANs. All other addresses should be available in the DHCP address pool.

Step 2: Create a DHCP pool on R2 for the R1 LAN.

- a. Create a DHCP pool named R1-LAN (case-sensitive).
- b. Configure the DHCP pool to include the network address, the default gateway, and the IP address of the DNS server.

Step 3: Create a DHCP pool on R2 for the R3 LAN.

- a. Create a DHCP pool named R3-LAN (case-sensitive).
- b. Configure the DHCP pool to include the network address, the default gateway, and the IP address of the DNS server.

Part 2: Configure DHCP Relay

- Step 1: Configure R1 and R3 as a DHCP relay agent.
- Step 2: Set PC1 and PC2 to receive IP addressing information from DHCP.

Part 3: Configure R2 as a DHCP Client

a. Configure the Gigabit Ethernet 0/1 interface on R2 to receive IP addressing from DHCP and activate the interface.

Note: Use Packet Tracer's **Fast Forward Time** feature to speed up the process or wait until R2 forms an EIGRP adjacency with the ISP router.

b. Use the **show ip interface brief** command to verify that R2 received an IP address from DHCP.

Part 4: Verify DHCP and Connectivity

Step 1: Verify DHCP bindings.

R2# show ip dhcp binding

IP address	Client-ID/	Lease expiration	Type
	Hardware address		
192.168.10.11	0002.4AA5.1470		Automatic
192.168.30.11	0004.9A97.2535		Automatic

Step 2: Verify configurations.

Verify that PC1 and PC2 can now ping each other and all other devices.